
teapot Documentation
Release 1.3

Julien Kauffmann

November 28, 2013

Contents

i

ii

teapot Documentation, Release 1.3

This documentation is about teapot, a multi-platform tool to ease fetching, organization and building of third-party
softwares.

Contents 1

teapot Documentation, Release 1.3

2 Contents

CHAPTER 1

What is teapot ?

teapot is a Python package that comes with teapot, a command-line interface tool. teapot reads a YAML file (called
the party file) which defines the source, the properties, the environment and the build steps for all the third-party
libraries to build.

The idea is to add a simple party.yaml file inside your project source tree that will describe which third-party
libraries it depends on and how to build them.

The first chapter, The party file, describes the format of the party file and enumerates all the possible options.

The second chapter, Inside the party, explains the internals of the teapot module, which will allow you to easily
write custom filters, extensions, fetchers, unarchivers and to change the complete behavior of teapot to perfectly suit
your needs.

3

teapot Documentation, Release 1.3

4 Chapter 1. What is teapot ?

CHAPTER 2

Why should I use teapot ?

Because you probably have more interesting things to do than dealing with third-party softwares.

Most of the time, people and companies end up writing their own set of scripts to build their dependencies. It can go
from a simple wget call that fetches precompiled binaries from some server, to more complex systems that download
and build them from source and try to do so as reliably as they can.

Writing a script that downloads a .tar.gz file, uncompresses it and builds it is really not difficult. But what if you want
to handle dependencies between your third party libraries, or desire to support variant builds ? How do you deal with
multiple platforms ? How can you react to changes and automatically rebuild what’s necessary ? With teapot, you
just have to write a simple party file once and call the teapot command once in a while. You can even integrate it into
your usual build system since it automatically deals with dependencies and avoids unecessary rebuilds.

How simpler can it get ?

5

teapot Documentation, Release 1.3

6 Chapter 2. Why should I use teapot ?

CHAPTER 3

So, will teapot build my third-party
software for me ?

Yes it will, but you will still have to tell him how exactly.

There are just too many different ways of building software for this to be done without human guidance.

However, teapot will make this as painless as it can get by automating all the other things that can be automated.

7

teapot Documentation, Release 1.3

8 Chapter 3. So, will teapot build my third-party software for me ?

CHAPTER 4

Why this name ?

No good reason really. I just don’t like spending too much time finding catchy names and a teapot is a nice tool so...
why not ? :)

9

teapot Documentation, Release 1.3

10 Chapter 4. Why this name ?

CHAPTER 5

What’s next ?

Here are the chapters you should read if you want to get familiar with teapot:

5.1 The party file

The party file is at the heart of teapot. It describes the different third-party softwares to build, and how to build them.

5.1.1 Structure

The party file is a YAML file whose root element is a dictionary. While YAML files can make use of a lot of complex
data structures, teapot only makes use of the common ones, namely:

• dictionaries

• lists

• strings

• booleans

• null

Note: The fact that teapot doesn’t make use of other data structures doesn’t mean you can’t use those; you can
actually do and use whatever you want when writing custom extensions.

The definition order of all elements in dictionaries is unspecified. This means teapot will not care at all in which order
you write the keys of a dictionary.

Strings can be any unicode string, however it is strongly recommended that you stick with ANSI characters, especially
when it comes to indexes.

Attendees

The attendees are a first-level element of the root dictionary. They are declared within a dictionary named attendees
whose each key is the index of an attendee, and whose values are the attendees themselves.

Here is an example that declares two attendees:

11

teapot Documentation, Release 1.3

attendees:
libiconv:
source: http://ftp.gnu.org/pub/gnu/libiconv/libiconv-1.14.tar.gz

libcurl:
source: http://curl.haxx.se/download/curl-7.32.0.tar.gz

This example, while perfectly valid, is not quite complete: as they are written, those attendees would be able to
download and unpack the specified archives, but they don’t know how to build the software they constitute.

Here is a more complete party file with an attendee that actually does something:

attendees:
libiconv:
source: http://ftp.gnu.org/pub/gnu/libiconv/libiconv-1.14.tar.gz
builders:

default:
commands:
- ./configure --prefix={{prefix}}
- make
- make install

This party file defines completely the way to build libicon, version 1.14. The archive will be downloaded from the
specified URL, it will be extracted and built with the usuall autotools scenario (./configure && make && make install).

In the ./configure command, you may notice the specific --prefix={{prefix}} syntax. This makes uses
of an extension that will be replaced on runtime by the prefix path for this build.

You may find more information on builders in the Builders section.

An attendee can have the following attributes:

source The source of the attendee. More on that in Sources.

filters A list of filters that the current execution environment must match in order for the attendee to be active. For
instance, one can use filters to specify different attendees for Windows and Linux, within the same party file.

builders A dictionary of builders that specify what to do with the source code. More on that in Builders.

depends A list of names of other attendees that this attendee depends on for building.

depends can also be a single string in case the attendee only depends on one other attendee.

prefix The attendee specific prefix.

The content of this value is used by the prefix extension at runtime.

If prefix is a relative path, it will be appended to the party file‘s prefix.

If prefix is an absolute path, it will be taken as it is.

If prefix is True, it will take the name of the attendee as a value. Use this to differentiate builds outputs directories
for different attendees.

Warning: If the dependency graph is cyclic, teapot will notice it before even starting the build and will warn you
about the problem.

Sources

The source directive in an attendee can take several forms.

The simpler form is a location string. The possible formats for this depends on the registered fetchers.

12 Chapter 5. What’s next ?

teapot Documentation, Release 1.3

Here are the default fetchers and their supported formats:

http Fetches an archive from a web URL in a fashion similar to the wget command. This is the most commonly used
fetcher.

Example formats:

• http://host/path/archive.zip

• https://host/path/archive.zip

file Fetches an archive from a filesystem path. The path can be either local or a network mount point.

Example formats:

• ~/archives/archive.tar.gz

• C:\archives\archive.zip

github Generates and fetches an archive from a Github-hosted project.

Example formats:

• github:user/repository/ref

source can also be a dict of attributes, like so:

attendees:
libiconv:
source:

location: http://ftp.gnu.org/pub/gnu/libiconv/libiconv-1.14.tar.gz
type: application/x-gzip
fetcher: http
fetcher_options:
filters: unix

All these attributes, except location are optional.

location A location string as they were just described.

type The mimetype of the archive. Can also be a list of two elements [mimetype, encoding] for more complex
mimetypes.

fetcher The fetcher to use. Specifying a fetcher disables the automatic fetcher type selection. Specifying a fetcher
only makes sense if the location string is ambiguous, which cannot happen with the built-in fetchers.

fetcher_options A dictionary of options for the fetcher. Built-in fetchers do not take any option.

filters A list of filters that the current execution environment must match in order for the source to be active. For
instance, one can use filters to specify different sources for Windows and Linux, within the same attendee.

For more complex situations, source can also be a list of either location strings or attributes dictionary (optionaly
mixed), like so:

attendees:
libiconv:
source:

-
location: http://ftp.gnu.org/pub/gnu/libiconv/libiconv-1.14_some-variant.tar.gz
type: application/x-gzip
fetcher: http
fetcher_options:
filters: windows

- http://ftp.gnu.org/pub/gnu/libiconv/libiconv-1.14.tar.gz

5.1. The party file 13

teapot Documentation, Release 1.3

Sources are tried in the declaration order for a given attendee. In this example, when teapot tries to download the
archive for the attendee, it will first try the first one, only on Windows. If the first one fails (say because of a network
error), or if teapot is run on a Unix variant, it will skip to the second source.

You may also extend teapot and implement your own fetchers, should you have specific needs.

Unpackers

At some point before the build, teapot must convert a downloaded (often compressed) archive into a source tree. This
is what unpackers are for.

The unpacker selection is done automatically, depending on the mimetype of the downloaded archive. That is, the
only way to choose which unpacker to use, is to change the mimetype of the attendee.

By default, teapot provides the following unpackers:

Tarball unpacker An unpacker that can uncompress tarballs (.tar.gz and .tar.bz2 files).

It recognizes the following mimetypes:

• application/x-gzip

• application/x-bzip2

Zipfile unpacker An unpacker that can uncompress zip archives (.zip files).

It recognizes only the application/zip mimetype.

Null unpacker An unpacker that does nothing. Useful for local files/directories.

It recognizes only the (null, null) mimetype.

You may also extend teapot and implement your own unpackers, should you have specific needs.

Builders

One of the most important thing to declare into an attendee, is its builders. A builder is responsible for taking an
unarchived source tree and creating something by issuing a series of commands.

Builders are declared like so:

attendees:
libiconv:
source: http://ftp.gnu.org/pub/gnu/libiconv/libiconv-1.14.tar.gz
builders:

mybuild:
commands:
- ./configure --prefix={{prefix}}
- make
- make install

In this simple example, teapot will go into the source tree unpacked from libiconv-1.14.tar.gz and will issue the following commands, in order:

• ./configure --prefix={{prefix}}

• make

• make install

14 Chapter 5. What’s next ?

teapot Documentation, Release 1.3

If all of these commands succeed, the build is considered successful as well.

Note: Here {{prefix}} is an extension that resolves at runtime as the current prefix for the builder. You can learn
more about extensions in the Extensions section.

One attendee can have as many different builders as you want it to have. All the builders are entries of the builders
dictionary where the key is the builder name, and the value if a dictionary of attributes for the builder.

Here is an example of a more complex attendee:

attendees:
libiconv:
source: http://ftp.gnu.org/pub/gnu/libiconv/libiconv-1.14.tar.gz
builders:

default_x86:
filters:
- windows
- mingw

environment: mingw_x86
tags: x86
commands:
- ./configure --prefix={{prefix(unix)}}
- make
- make install

prefix: True
clean_commands:
- rm -rf {{prefix(unix)}}

default_x64:
filters:
- windows
- mingw

environment: mingw_x64
tags: x64
commands:
- ./configure --prefix={{prefix(unix)}}
- make
- make install

prefix: True
clean_commands:
- rm -rf {{prefix(unix)}}

In this example, we define two builders (default_x86 and default_x64) that have exactly the same build commands.

Both are to be executed if, and only if, MinGW is available in the execution environment. They each make use of a
customized environment (more on that in Environments).

Also note that a tag has been added for every one of them, so that the user can easily choose between x86 and x64
builds when using teapot.

Inside the party file, the builder dictionary supports the following attributes:

commands Can be either a string with a single command to execute or a list of commands to execute.

Commands can contain extensions and environment variables that will be substituted upon execution.

clean_commands The list of commands to call when cleaning is requested. clean_commands obeys the same rules as
command (extensions are replaced as well) however, unlike the regular commands, they are executed within the
root directory (where the party file is located).

5.1. The party file 15

teapot Documentation, Release 1.3

environment The environment in which the build must take place.

If no environment is specified, the default environment is taken, which is the one the teapot command is running
in.

You can learn more about environments in the Environments section.

tags A list of tags for the builder.

Tags can be used later on by the teapot command to restrict the builders to run dynamically.

One common use for tags is to differentiate builders for different build architectures (x86 and x64 for instance).

filters A list of filters that the current execution environment must match in order for the builder to be active. For
instance, one can use filters to specify different builders for Windows and Linux, within the same attendee.

prefix The builder specific prefix.

The content of this value is used by the prefix extension at runtime.

If prefix is a relative path, it will be appended to the attendee‘s prefix.

If prefix is an absolute path, it will be taken as it is.

If prefix is True, it will take the name of the builder as a value. Use this to differentiate builds outputs easily for
a given attendee.

Environments

Environments define the execution environment of a builder.

They can be defined either at the attendee level (within a builder declaration), or inside the global environments
dictionary, at the root of party file.

An environment can inherit from another named environment.

Here is an example of party file that defines environments:

attendees:
libiconv:
source: http://ftp.gnu.org/pub/gnu/libiconv/libiconv-1.14.tar.gz
builders:

default_x86:
environment: mingw_x86
tags: x86
commands:
- ./configure --prefix={{prefix(unix)}}
- make
- make install

prefix: True

default_x64:
environment: mingw_x64
tags: x64
commands:
- ./configure --prefix={{prefix(unix)}}
- make
- make install

prefix: True

environments:
mingw_x86:

16 Chapter 5. What’s next ?

teapot Documentation, Release 1.3

shell: ["C:\\MinGW\\msys\\1.0\\bin\\bash.exe", "-c"]
inherit: default
variables:

PATH: "C:\\MinGW32\\bin:%PATH%"

mingw_x64:
shell: ["C:\\MinGW\\msys\\1.0\\bin\\bash.exe", "-c"]
inherit: default
variables:

PATH: "C:\\MinGW64\\bin:%PATH%"

In this example, we define two environments that use the same shell (here, bash for Windows). They both inherit from
the default environment and each (re)define the PATH environment variable.

An environment dictionary understands the following attributes:

shell The shell to use.

shell can be a list of command arguments (with the executable as the first argument). This is the recommended
way of specifying the shell as it is unambiguous.

If shell is a string, it will be parsed and split into a list using shlex.split(). This method of defining the
shell and its arguments can be ambiguous and is therefore not recommended.

shell can also be True (the default), in which case its value will be taken from the inherited environment, if it
has one.

If no shell is specified, the default one from the system will be taken as specified in subprocess.call().

variables A dictionary of environment variables to set, remove or override.

Each variable can be set to either a string, or to null (the YAML equivalent of None).

The behavior a null value depends on the value of inherit.

If the environment inherits its attributes from another environment, a null value indicates that the environment
variable should be removed from the environment. This is not equivalent to setting its value to an empty string
(in this case the variable would still be part of the environment, but would just be empty).

If the environment does not inherit its attributes from another environment, a null value indicates that the value
for this environment variable should be the one of the execution environment (the environment into which teapot
was called). If the environment variable was not set within the execution environment, it won’t be set in the new
environment if its value was null.

inherit inherit can be null (the default), or it can be the name of a named environment to inherit from.

If inherit is null, none of the existing environment variables are inherited and only the ones defined in the
variables attribute will be set.

Note: By default, teapot exposes the execution environment through the name default.

This default environment has all the environment variables that were set right before the call to teapot and uses the
default system shell.

Filters

Filters are a way to differentiate teapot execution accross platforms and environments. A filter is basically a test whose
result is boolean. It answers a simple question like: am on Windows ? Is MinGW available ?

teapot comes with several built-in filters:

5.1. The party file 17

http://docs.python.org/library/shlex.html#shlex.split
http://docs.python.org/library/subprocess.html#subprocess.call

teapot Documentation, Release 1.3

Fil-
ter

Role

win-
dows

Check that teapot is currently running on Windows.

linux Check that teapot is currently running on Linux.
dar-
win

Check that teapot is currently running on Darwin (Mac OS X).

unix Check that teapot is currently running on UNIX (Linux or Darwin).
msvc Check that Microsoft Visual Studio is actually available in the current environment.

It usually means teapot was started from a MSVC command shell.
msvc-
x86

Check that Microsoft Visual Studio x86 is actually available in the current environment.
It usually means teapot was started from a MSVC x86 command shell.

msvc-
x64

Check that Microsoft Visual Studio x64 is actually available in the current environment.
It usually means teapot was started from a MSVC x64 command shell.

mingw Check that MinGW is available in the current environment.
The filter will try to find gcc.exe.

Note: When defining several filters in an attendee, a source or a builder, note that all filters must be verified for the
validation to pass.

You may also define your own filters, see Writing extension modules.

Extensions

Extensions are simple functions, that optionally have parameters, which can occur in a builder command.

For instance the prefix extension is resolved at runtime and replaced with the complete prefix (as defined at the root of
the party file, the attendee and the builder).

Here is an example:

attendees:
libiconv:
source: http://ftp.gnu.org/pub/gnu/libiconv/libiconv-1.14.tar.gz
builders:

default_x86:
filters: mingw
commands:
- ./configure --prefix={{prefix(unix)}}
- make
- make install

prefix: True

In this example, designed to run from within a MSys environment on Windows, we make use of the prefix extension
and we supply the style parameter. Upon runtime, the expression gets replaced with the UNIX-style path to the prefix,
as defined in the party file.

Valid syntaxes for calling extensions within commands are:

{{extension}} # No parameters.
{{extension()}} # No parameters. No difference with the first call.
{{extension(arg1)}} # Call with one parameter.
{{extension(arg1,arg2)}} # Call with two parameters.
{{extension(,arg2)}} # Call with two parameters, the first one being omitted.
{{extension(arg1,,arg3)}} # Call with three parameters, the second one being omitted.

teapot comes with several built-in extensions:

18 Chapter 5. What’s next ?

teapot Documentation, Release 1.3

Extension Parame-
ters

Role

root style Get the absolute path to the root of the party file.
Returns the complete path, in an operating system specific manner.
On UNIX and its derivatives, forward slashes are used. On Windows, backwards
slashes are used.
If style is set to unix, forward slashes are used, even on Windows. This is useful
inside MSys or Cygwin environments.

prefix style Get the complete prefix for the current attendee/builder.
Returns the complete path, in an operating system specific manner.
On UNIX and its derivatives, forward slashes are used. On Windows, backwards
slashes are used.
If style is set to unix, forward slashes are used, even on Windows. This is useful
inside MSys or Cygwin environments.
prefix can contain extensions, as long as it doesn’t call itself directly, or indirectly.

prefix_for attendee,
builder,
style

Get the complete prefix for the specified attendee/builder.
You must at least specify the attendee parameter.
Returns the complete path, in an operating system specific manner.
On UNIX and its derivatives, forward slashes are used. On Windows, backwards
slashes are used.
If style is set to unix, forward slashes are used, even on Windows. This is useful
inside MSys or Cygwin environments.
prefix_for can contain extensions, as long as it doesn’t call itself directly, or
indirectly.

cur-
rent_attendee

Returns the current attendee name.

cur-
rent_builder

Returns the current builder name.

cur-
rent_archive_path

style Returns the current archive path.
On UNIX and its derivatives, forward slashes are used. On Windows, backwards
slashes are used.
If style is set to unix, forward slashes are used, even on Windows. This is useful
inside MSys or Cygwin environments.

cur-
rent_source_tree_path

style Returns the current source tree path.
On UNIX and its derivatives, forward slashes are used. On Windows, backwards
slashes are used.
If style is set to unix, forward slashes are used, even on Windows. This is useful
inside MSys or Cygwin environments.
Since source trees are copied to a temporary location before the build, this is not the
path were the build actually takes place.

msvc_version Get the current Microsoft Visual Studio version, as a dotted version string.
Example: “12.0”

msvc_toolset Get the current Microsoft Visual Studio toolset. Example: “v120”

You may also define your own extensions, see Writing extension modules.

Other settings

teapot runs with the following defaults:

Parameter Default value Meaning

cache_path ~/.teapot.cache (UNIX) The path where the archives are downloaded to.

%APPDATA%/teapot/cache (Windows)

5.1. The party file 19

teapot Documentation, Release 1.3

build_path ~/.teapot.build (UNIX) The path where the builds take place.

%APPDATA%/teapot/build (Windows)

prefix install The default party file prefix that gets prepended to all attendees prefixes.

These settings are to be set at the root of the party file, like so:

attendees:
libiconv:
source: http://ftp.gnu.org/pub/gnu/libiconv/libiconv-1.14.tar.gz

cache_path: cache
build_path: build
prefix: install

Depending on your project, you may want to set the cache_path to a more local location (you may choose to add them
to version control for instance).

Writing extension modules

teapot was designed from the start to be extensible.

Using the extension_modules attribute at the root of party file, you can extend teapot any way you want.

Those extensions modules are regular Python modules into which you can define filters, extensions, environments or
anything else you want.

The extension_modules attribute is a dictionary located at the root of the party file where keys are the shortnames for
the modules, and the values are the path to those modules:

extension_modules:
myfilter: modules/myfilter.py
myenvironment: modules/myenvironment.py

To get more details about how to write filters, extensions and environments, take a look at Inside the party.

5.1.2 Using teapot

teapot is the command line tool that ships with teapot.

$ teapot --help
usage: teapot [-h] [-d] [-v] [-p PARTY_FILE]

{clean,fetch,unpack,build} ...

Manage third-party software.

positional arguments:
{clean,fetch,unpack,build}

The available commands.
clean Clean the party.
fetch Fetch all the archives.
unpack Unpack all the fetched archives.
build Build the archives.

optional arguments:
-h, --help show this help message and exit
-d, --debug Enable debug output.
-v, --verbose Be more explicit about what happens.

20 Chapter 5. What’s next ?

teapot Documentation, Release 1.3

-p PARTY_FILE, --party-file PARTY_FILE
The party-file to read.

By default, teapot looks for a file named party.yaml in the current directory. You may change the location of this
file by using the --party-file option.

The clean command

teapot fetches the sources archives and stores them in the cache directory. It also build attendees and stores the
temporary results inside the build directory.

Use teapot clean to clean either the cache or the build directory (or both).

The use of this command in normally not needed as teapot knows how to compute dependencies and detect changes
automatically.

$ teapot clean --help
usage: teapot clean [-h] {cache,build,all} ...

positional arguments:
{cache,build,all} The available commands.
cache Clean the party cache.
build Clean the party build.
all Clean the party cache and build.

optional arguments:
-h, --help show this help message and exit

The clean cache command

Cleans the teapot cache directory, where the source archives are stored.

Use this command if, for whatever reason you think the archive cache was corrupted.

If no attendee is specified, all the attendees are cleaned.

$ teapot clean cache --help
usage: teapot clean cache [-h] [attendee [attendee ...]]

positional arguments:
attendee The attendees to clean.

optional arguments:
-h, --help show this help message and exit

The clean build command

Cleans the teapot build directory, where the build results are stored.

Use this command if, for whatever reason you think the build results were corrupted.

If no attendee is specified, all the attendees are cleaned.

$ teapot clean build --help
usage: teapot clean build [-h] [attendee [attendee ...]]

5.1. The party file 21

teapot Documentation, Release 1.3

positional arguments:
attendee The attendees to clean.

optional arguments:
-h, --help show this help message and exit

The clean cache command

Cleans the teapot cache and build directories.

Use this command if, for whatever reason you want to reset the status of your current teapot project.

If no attendee is specified, all the attendees are cleaned.

$ teapot clean all --help
usage: teapot clean all [-h] [attendee [attendee ...]]

positional arguments:
attendee The attendees to clean.

optional arguments:
-h, --help show this help message and exit

The fetch command

Fetches the source archives of the specified attendees.

teapot fetch makes sure all the source archives are downloaded for the specified attendees.

If no attendee is specified, the source archives for all attendees are fetched.

By default, this command only fetches archives that weren’t already downloaded. Use the --force option to force
the download of all attendees.

$ teapot fetch --help
usage: teapot fetch [-h] [-f] [attendee [attendee ...]]

positional arguments:
attendee The attendees to fetch.

optional arguments:
-h, --help show this help message and exit
-f, --force Fetch archives even if they already exist in the cache.

The unpack command

Unpacks the fetched source archive to prepare for a build.

If no attendee is specified, all the attendees are unpacked.

$ teapot unpack --help
usage: teapot unpack [-h] [-f] [attendee [attendee ...]]

positional arguments:
attendee The attendees to unpack.

22 Chapter 5. What’s next ?

teapot Documentation, Release 1.3

optional arguments:
-h, --help show this help message and exit
-f, --force Unpack archives even if they already exist in the build.

This step is usually not required as it performed automatically whenever needed. Use it when you don’t want to build
right away but want the next build to be as fast as possible.

Calling unpack automatically fetches the source archives if they are not present.

The build command

Builds the attendees.

If no attendee is specified, all the attendees are built. If a list of attendees<attendee> is specified, only those attendees
and the ones they depend on will be built.

$ teapot build --help
usage: teapot build [-h] [-t tag] [-u] [-f] [-k] [attendee [attendee ...]]

positional arguments:
attendee The attendees to build.

optional arguments:
-h, --help show this help message and exit
-t tag, --tags tag The tags to build.
-u, --force-unpack Delete and reunpack all source tree directories before

attempting a build.
-f, --force-build Run all builders even if their last run was successful.
-k, --keep-builds Keep the build directories for inspection.

By default, all variants from all builders are taken. You may specify the --tags option to build only specific variants
(like x86 or x64 for instance).

Only the builders that didn’t succeeded the last time or the one that changed since the last build are run. To change
that behavior, specify the --force-build option.

teapot will not try to re-unpack archives that were already unpacked unless --force-unpack is specified.

Temporary build directories are deleted automatically whenever a build terminates (either with a success or a failure),
unless the --keep-builds option is specified. In that case, the build directory remains until the build gets restarted.

5.2 Inside the party

This chapter describes how to write custom module-extensions for teapot.

5.2.1 Filters

We already seen in Filters what a filter is. Now is the time to write your owns !

A filter is a simple function that takes no parameters and returns a boolean value.

To register a new filter, use the teapot.filters.decorators.named_filter() decorator.

class teapot.filters.decorators.named_filter(name, depends=None, override=False)
Registers a function to be a filter.

5.2. Inside the party 23

teapot Documentation, Release 1.3

__init__(name, depends=None, override=False)
Registers the function with the specified name.

If another function was registered with the same name, a DuplicateFilterError will be raised, unless over-
ride is truthy.

depends can be either:

• None, if the filter does not depend on any other filter.

• A str instance, being the registered name of another filter to depend on.

• A list of str instances, being the list of registered names of other filters to depend on.

If a filter depends on other filters, those will be checked before the actual filter gets run.

Here is an example of some built-in filters:

import os
import sys

from teapot.filters.decorators import named_filter

@named_filter(’windows’)
def windows():

"""
Check if the platform is windows.
"""

return sys.platform.startswith(’win32’)

@named_filter(’msvc’, depends=’windows’)
def msvc():

"""
Check if MSVC is available.
"""

return ’VCINSTALLDIR’ in os.environ

5.2.2 Extensions

As seen in Extensions, an extension is a function, that always takes a builder argument, optionally takes string param-
eters and returns a string.

Extensions are to teapot what macros are to the C language.

To register a new extension, use the teapot.extensions.decorators.named_extension() decorator.

Here is an example of some built-in extensions:

import os
import sys

from teapot.path import windows_to_unix_path
from teapot.extensions.decorators import named_extension

@named_extension(’prefix’)
def prefix(builder, style=’default’):

"""
Get the builder prefix.
"""

24 Chapter 5. What’s next ?

teapot Documentation, Release 1.3

result = os.path.join(builder.attendee.party.prefix, builder.attendee.prefix, builder.prefix)

if sys.platform.startswith(’win32’) and style == ’unix’:
result = windows_to_unix_path(result)

return result

Note that the function must always have first builder argument that will be valued with the current
teapot.builders.Builder instance.

5.2.3 Fetchers

Fetchers are responsible for downloading or copying the source archives from a specified location.

To define a new fetcher, just derive from teapot.fetchers.base_fetcher.BaseFetcher.

Here is an example with the built-in file fetcher:

import os
import shutil
import mimetypes

from teapot.fetchers.base_fetcher import BaseFetcher

class FileFetcher(BaseFetcher):

"""
Fetchs a file on the local filesystem.
"""

shortname = ’file’

def read_source(self, source):
"""
Checks that the ‘source‘ is a local filename.
"""

if os.path.isfile(source.location):
self.file_path = os.path.abspath(source.location)

return True

def do_fetch(self, target):
"""
Fetch a filename.
"""

archive_path = os.path.join(target, os.path.basename(self.file_path))

archive_type = mimetypes.guess_type(self.file_path)
size = os.path.getsize(self.file_path)

self.progress.on_start(target=os.path.basename(archive_path), size=size)

shutil.copyfile(self.file_path, archive_path)

5.2. Inside the party 25

teapot Documentation, Release 1.3

No real interactive progress to show here.
#
This could be fixed though.

self.progress.on_update(progress=size)
self.progress.on_finish()

return {
’archive_path’: archive_path,
’archive_type’: archive_type,

}

Callbacks

All callback classes derive from teapot.fetchers.callbacks.BaseFetcherCallback.

5.2.4 Unpackers

Unpackers are responsible for extracting the content of the source archives into an exploitable source tree.

To define a new unpacker, just derive from teapot.unpackers.base_unpacker.BaseUnpacker.

class teapot.unpackers.base_unpacker.BaseUnpacker(attendee)
Base class for all unpacker classes.

If you subclass this class, you will have to re-implement the do_unpack() method to provide your specific
unpacker logic.

If you desire to attach your unpacker to certain mimetypes, please do so by defining the class-level member
types that must be a list of couples (mimetype, encoding).

do_unpack()
Unpack an archive.

The archive to unpack can be reached at self.archive_path.

This method must return a dict with the following keys:

• source_tree_path: The extracted source tree path.

It must raise an exception on error.

You can provide feedback on the unpacking operation by calling self.progress.on_start,
self.progress.on_update and self.progress.on_finish at the appropriate time.

See teapot.unpackers.callbacks.BaseUnpackerCallback for further details.

Here is an example with the built-in tarball unpacker:

from teapot.unpackers.base_unpacker import BaseUnpacker

import os
import tarfile

class TarballUnpacker(BaseUnpacker):

"""
An unpacker class that deals with .tgz files.
"""

26 Chapter 5. What’s next ?

teapot Documentation, Release 1.3

types = [
(’application/x-gzip’, None),
(’application/x-bzip2’, None),

]

def do_unpack(self):
"""
Uncompress the archive.

Return the path of the extracted folder.
"""

if not tarfile.is_tarfile(self.archive_path):
raise InvalidTarballError(archive_path=self.archive_path)

tar = tarfile.open(self.archive_path, ’r’)

We get the common prefix for all archive members.
prefix = os.path.commonprefix(tar.getnames())

An archive member with the prefix as a name should exist in the archive.
while True:

try:
prefix_member = tar.getmember(prefix)

if prefix_member.isdir:
break

except KeyError:
pass

new_prefix = os.path.dirname(prefix)

if prefix == new_prefix:
raise TarballHasNoCommonPrefixError(archive_path=self.archive_path)

else:
prefix = new_prefix

source_tree_path = os.path.join(self.attendee.build_path, prefix_member.name)

self.progress.on_start(count=len(tar.getmembers()))

for index, member in enumerate(tar.getmembers()):
if os.path.isabs(member.name):

raise ValueError(’Refusing to extract archive that contains absolute filenames.’)

self.progress.on_update(current_file=member.name, progress=index)
tar.extract(member, path=self.attendee.build_path)

self.progress.on_finish()

return {
’source_tree_path’: source_tree_path,

}

5.2. Inside the party 27

teapot Documentation, Release 1.3

Callbacks

All callback classes derive from teapot.unpackers.callbacks.BaseUnpackerCallback.

5.2.5 Party post-actions

post-actions are simple function that takes a teapot.party.Party instance as a parameter, and that gets executed
right after a such instance was initialized.

You can register a post-action using the teapot.party.Party.register_post_action() decorator.

Here is an example a built-in post-action that registers the defaut environment:

@Party.register_post_action
def add_default_environment(party):

"""
Add the default environment to the party.
"""

party.environment_register.register_environment(DEFAULT_ENVIRONMENT_NAME, create_default_environment())

5.3 Glossary

party file The party file is a YAML file, named party.yaml that can be located anywhere.

Within the party file, all paths are relative to the party file directory.

attendee An attendee is a fancy name for a third-party software to build.

A party file can contain as many attendees as you like, and different attendees can even represent the same
third-party software if that makes sense in your situation.

source A source designates the location and the method where and how to fetch the source files for an attendee.
While the most common case is downloading a file using HTTP, one can also copy a file locally, through a
network share or from Github.

fetcher A fetcher is the entity that is responsible for handling a specific type of source.

Usually, fetchers are smart enough to recognize sources from their format and you should not have to care too
much about them.

unpacker An unpacker is the entity that is responsible for turning a compressed archive (Zip file or tarball for
instance) into a source tree.

builder A builder is the list of commands to execute in order to transform the attendee source into a compiled set of
binaries (or whatever a build process can produce).

Builders rely a lot on environments.

environment An environment is a set of environment variables, shell value and inheritance parameters that wraps
one or several builds.

Environments define the tools to use for a given build, and their options.

filter A filter is an entity whose role is to check if the current execution environment matches a series of criterias.

For instance, the windows filter checks that teapot has been run on Windows. Another example is the mingw
filter whose role is to check that MinGW is currently available in the execution environment.

teapot teapot is the name of the command-line tool that implements all teapot logic.

28 Chapter 5. What’s next ?

teapot Documentation, Release 1.3

shell A shell is a command line interpreter that will execute the different commands of a builder.

extension An extension is an entity the resides in builder commands and that gets replaced when the command is
evaluated.

Extension are python function that can optionally take parameters.

5.3. Glossary 29

