

teapot - A third-party building tool

This documentation is about teapot, a multi-platform tool to ease fetching, organization and building of third-party softwares.

What is teapot ?

teapot is a Python package that comes with teapot, a command-line interface tool. teapot reads a party file which defines the source, the properties, the environment and the build steps for all the third-party libraries to build.

The idea is to add a simple Party (or .party) file inside your project source tree that will describe which third-party libraries it depends on and how to build them.

The party file, describes the format of the party file and enumerates all the possible options.

Why should I use teapot ?

Because you probably have more interesting things to do than dealing with third-party softwares.

Most of the time, people and companies end up writing their own set of scripts to build their dependencies. It can go from a simple wget call that fetches precompiled binaries from some server, to more complex systems that download and build them from source and try to do so as reliably as they can.

Writing a script that downloads a .tar.gz file, uncompresses it and builds it is really not difficult. But what if you want to handle dependencies between your third party libraries, or desire to support variant builds ? How do you deal with multiple platforms ? How can you react to changes and automatically rebuild what’s necessary ? With teapot, you just have to write a simple party file once and call the teapot command once in a while. You can even integrate it into your usual build system since it automatically deals with dependencies and avoids unecessary rebuilds.

For instance, this party file downloads, unpacks and builds the popular libiconv on all UNIX platforms:

from teapot import *

Attendee('iconv').add_source('http://ftp.gnu.org/pub/gnu/libiconv/libiconv-1.14.tar.gz')
Attendee('iconv').add_build('default')
Attendee('iconv').get_build('default').add_command('./configure --prefix={{prefix}}')
Attendee('iconv').get_build('default').add_command('make')
Attendee('iconv').get_build('default').add_command('make install')

How simpler can it get ?

So, will teapot build my third-party software for me ?

Yes it will, but you will still have to tell him how exactly.

There are just too many different ways of building software for this to be done without human guidance.

However, teapot will make this as painless as it can get by automating all the other steps that can be automated.

Why this name ?

No good reason really. I just don’t like spending too much time finding catchy names and a teapot is a nice object so... why not ? :)

What’s next ?

Here are the chapters you should read if you want to get familiar with teapot:

	1. The party file
	1.1. Structure

	1.2. Using teapot

	2. Glossary

1. The party file

The party file is at the heart of teapot. It describes the different third-party softwares to build, and how to build them.

1.1. Structure

The party file is a regular Python file.

Whatever you write in the party file is declarative, meaning that you don’t tell teapot to actually build things, you just tell it what to build, and how. The actual build process will take place later when you call the command-line tool. See the party file as a declaration file.

1.1.1. Attendees

attendees are the main element of the party file. An attendee represents a library/project to build. An attendee can have one or several sources, and one or several builds.

Here is an example that declares two attendees:

from teapot import *

Attendee('iconv').add_source('http://ftp.gnu.org/pub/gnu/libiconv/libiconv-1.14.tar.gz')
Attendee('curl').add_source('http://curl.haxx.se/download/curl-7.32.0.tar.gz')

This example, while perfectly valid, is not quite complete: as they are written, those attendees would be able to download and unpack the specified archives, but they don’t know how to build the software they constitute.

Here is a more complete party file with an attendee that actually does something:

from teapot import *

Attendee('iconv').add_source('http://ftp.gnu.org/pub/gnu/libiconv/libiconv-1.14.tar.gz')
Attendee('iconv').add_build('default', environment='system')
Attendee('iconv').get_build('default').add_command('./configure --prefix={{prefix}}')
Attendee('iconv').get_build('default').add_command('make')
Attendee('iconv').get_build('default').add_command('make install')

This party file defines completely the way to build libicon, version 1.14. The archive will be downloaded from the specified URL, it will be extracted and built with the usuall autotools scenario (./configure && make && make install).

In the ./configure command, you may notice the specific --prefix={{prefix}} syntax. This makes uses of an extension that will be replaced on runtime by the prefix path for this build.

You may find more information on builds in the Builders section.

If you are used to Python development, you will notice something strange: we defined several times Attendee('iconv') yet it seems to refer to the same object. In teapot, instances of Attendee are memoized, meaning that any instanciation that uses the same name will actually refer to the same instance. The same goes for Build and some other classes. Obviously, this doesn’t prevent you from assigning the instances to variables, like you would do in a regular Python script. So you may actually write the same script that way:

from teapot import *

iconv = Attendee('iconv')
iconv.add_source('http://ftp.gnu.org/pub/gnu/libiconv/libiconv-1.14.tar.gz')
iconv.add_build('default', environment='system')

iconv_default = Attendee('iconv').get_build('default')
iconv_default.add_command('./configure --prefix={{prefix}}')
iconv_default.add_command('make')
iconv_default.add_command('make install')

Instances of Attendee can be filtered. The filter can be specified either in the first instanciation of the Attendee, or later, using the attendee.filter property.

For instance, to make an attendee only exist on Windows, one could write:

from teapot import *

During instanciation.
Attendee('iconv', filter='windows')

Later.
Attendee('iconv').filter = 'windows'

You will learn more about filters in the Filters section.

Attendees can also depend on each other, using the attendee.depends_on() method.

from teapot import *

Attendee('a')
Attendee('b').depends_on('a')
Attendee('c').depends_on('a', 'b')
Attendee('d').depends_on('a', 'b', Attendee('c'))

The depends_on() method can take zero, one or several attendee names or instances.

Warning

If the dependency graph is cyclic, teapot will notice it before even starting the build and will warn you about the problem.

Attendees can also have their custom prefix for installation. For instance, if one attendee needs to install inside a specific subfolder, you may write:

from teapot import *

set_option('prefix', '/tmp/output')

Attendee('iconv', prefix='subfolder')
or
Attendee('iconv').prefix = 'subfolder'

If prefix is an absolute path, then the parent prefix is ignored.

1.1.1.1. Sources

A source can be anything you want. By default teapot supports three sources types:

	http

	Fetches an archive from a web URL in a fashion similar to the wget command. This is the most commonly used fetcher.

	Example formats:

	
	http://host/path/archive.zip

	https://host/path/archive.zip

	file

	Fetches an archive from a filesystem path. The path can be either local or a network mount point.

	Example formats:

	
	file://~/archives/archive.tar.gz

	file://C:\archives\archive.zip

	folder

	Fetches an archive from a filesystem path. The path can be either local or a network mount point. The target must point to an already uncompressed source tree.

	Example formats:

	
	folder://~/archives/source

	folder://C:\archives\source

	github

	Generates and fetches an archive from a Github-hosted project.

	Example formats:

	
	github:user/repository/ref

Sources are also filterable, following the same rules than for attendees.

teapot reads the mime type of the archives to extract them. If, for whatever reason, the mime type of the archive cannot be detected for a given source you may specify it in the attendee.add_source() method call, by specifying the mimetype named argument. This can happen for instance when a HTTP webserver is misconfigured and does not specify a Content-Type for a given archive.

1.1.1.2. Unpackers

At some point before the build, teapot must convert a downloaded (often compressed) archive into a source tree. This is what unpackers are for.

The unpacker selection is done automatically, depending on the mime type of the downloaded archive. That is, the only way to choose which unpacker to use, is to change the mimetype of the source.

By default, teapot provides the following unpackers:

	Tarball unpacker

	An unpacker that can uncompress tarballs (.tar.gz and .tar.bz2 files).

	It recognizes the following mimetypes:

	
	application/x-gzip

	application/x-bzip2

	Zipfile unpacker

	An unpacker that can uncompress zip archives (.zip files).

It recognizes only the application/zip mimetype.

	Null unpacker

	An unpacker that does nothing. Useful for local files/directories.

It recognizes only the (null, null) mimetype.

You may also extend teapot and implement your own unpackers, should you have specific needs.

Note

You can specify some actions to perform after the unpacking process completed using the :method:`teapot.attendee.Attendee.add_post_unpack_command` method. These commands can have a filter.

1.1.1.3. Builders

One of the most important thing to declare into an attendee, is its builds. A build is responsible for taking an unarchived source tree and creating something by issuing a series of commands.

Builders are declared like so:

from teapot import *

Attendee('iconv').add_source('http://ftp.gnu.org/pub/gnu/libiconv/libiconv-1.14.tar.gz')
Attendee('iconv').add_build('default', environment='system')
Attendee('iconv').get_build('default').add_command('./configure --prefix={{prefix}}')
Attendee('iconv').get_build('default').add_command('make')
Attendee('iconv').get_build('default').add_command('make install')

	In this simple example, teapot will go into the source tree unpacked from libiconv-1.14.tar.gz and will issue the following commands, in order:

	
	./configure --prefix={{prefix}}

	make

	make install

If all of these commands succeed, the build is considered successful as well.

Note

Here {{prefix}} is an extension that resolves at runtime as the current prefix for the build. You can learn more about extensions in the Extensions section.

One attendee can have as many different builds as you want.

Here is an example of a more complex attendee:

from teapot import *

Attendee('iconv').add_source('http://ftp.gnu.org/pub/gnu/libiconv/libiconv-1.14.tar.gz')
Attendee('iconv').add_build('default_x86', environment='mingw_x86')
Attendee('iconv').get_build('default_x86').add_command('./configure --prefix={{prefix}}')
Attendee('iconv').get_build('default_x86').add_command('make')
Attendee('iconv').get_build('default_x86').add_command('make install')

Attendee('iconv').add_build('default_x64', environment='mingw_x64')
Attendee('iconv').get_build('default_x64').add_command('./configure --prefix={{prefix}}')
Attendee('iconv').get_build('default_x64').add_command('make')
Attendee('iconv').get_build('default_x64').add_command('make install')

In this example, we define two builds (default_x86 and default_x64) that have exactly the same build commands.

Each build has another environment. The current example lacks the environments definitions for simplicity’s sake. You will learn how to define your own environments in a further section.

Builds can be filtered like attendees and can also have a custom prefix.

1.1.2. Environments

Environments define the execution environment of a build.

An environment can inherit from another environment.

Here is an example of party file that defines environments:

from teapot import *

Environment('mingw_x86', shell=["C:\\MinGW\\msys\\1.0\\bin\\bash.exe", "-c"], variables={'PATH': "C:\\MinGW32\\bin:%PATH%"}, parent='system')
Environment('mingw_x64', shell=["C:\\MinGW\\msys\\1.0\\bin\\bash.exe", "-c"], variables={'PATH': "C:\\MinGW64\\bin:%PATH%"}, parent='system')

In this example, we define two environments that use the same shell (here, bash for Windows). They both inherit from the system environment and each (re)define the PATH environment variable.

An environment dictionary understands the following attributes:

	shell

	The shell to use.

shell can be a list of command arguments (with the executable as the first argument). This is the recommended way of specifying the shell as it is unambiguous.

If shell is a string, it will be parsed and split into a list using shlex.split() [https://docs.python.org/2/library/shlex.html#shlex.split]. This method of defining the shell and its arguments can be ambiguous and is therefore not recommended.

shell can also be True (the default), in which case its value will be taken from the parent environment, if it has one.

If no shell is specified, the default one from the system will be taken as specified in subprocess.call() [https://docs.python.org/2/library/subprocess.html#subprocess.call].

	variables

	A dictionary of environment variables to set, remove or override.

Each variable can be set to either a string, or to None.

The behavior a null value depends on the value of parent.

If the environment inherits its attributes from another environment, a null value indicates that the environment variable should be removed from the environment. This is not equivalent to setting its value to an empty string (in this case the variable would still be part of the environment, but would just be empty).

If the environment does not inherit its attributes from another environment, a null value indicates that the value for this environment variable should be the one of the execution environment (the environment into which teapot was called). If the environment variable was not set within the execution environment, it won’t be set in the new environment if its value was null.

	parent

	parent can be None (the default), or it can be the name of a named environment to inherit from.

If parent is null, none of the existing environment variables are inherited and only the ones defined in the variables attribute will be set.

Note

By default, teapot exposes the execution environment through the name system.

This system environment has all the environment variables that were set right before the call to teapot and uses the default system shell.

1.1.3. Filters

Filters are a way to differentiate teapot execution accross platforms and environments. A filter is basically a test whose result is boolean. It answers a simple question like: am on Windows ? Is MinGW available ?

teapot comes with several built-in filters:

	Filter
	Role

	windows
	Check that teapot is currently running on Windows.

	linux
	Check that teapot is currently running on Linux.

	darwin
	Check that teapot is currently running on Darwin (Mac OS X).

	unix
	Check that teapot is currently running on UNIX (Linux or Darwin).

	msvc
	Check that Microsoft Visual Studio is actually available in the current environment.

It usually means teapot was started from a MSVC command shell.

	msvc-x86
	Check that Microsoft Visual Studio x86 is actually available in the current environment.

It usually means teapot was started from a MSVC x86 command shell.

	msvc-x64
	Check that Microsoft Visual Studio x64 is actually available in the current environment.

It usually means teapot was started from a MSVC x64 command shell.

	mingw
	Check that MinGW is available in the current environment.

The filter will try to find gcc.exe.

All classes can refer to filters using their name (as a Python string) or directly (referring to a teapot.filters.filter.Filter instance).

teapot exposes two helper functions, f and uf which respectively stand for “filter” and “unnamed filter”. Filters can be aggregated using standard bit-wise operators like so:

from teapot import *

Define a new filter, named 'x64' that is verified if either of the filters `mingw64` or `gcc64` are defined.
f('x64', f('mingw64') | f('gcc64'))

Define a new filter, named 'foo' that is verified is we run on Windows and with MinGW or on UNIX but not on Darwin.
f('foo', (f('windows') & f('mingw')) | f('unix') & ~f('darwin'))

Filters can also be created from variables or callables.
f('bar', uf(True) & uf(lambda: True))

Finally, one can also use the `named_filter` decorator to declare a custom filter.
@named_filter('has_foo')
def has_foo():
 return 'FOO' in os.environ()

1.1.4. Extensions

Extensions are simple functions, that optionally have parameters, which can occur in a build or post-unpack command.

For instance the prefix extension is resolved at runtime and replaced with the complete prefix (as defined at the root of the party file, the attendee and the build).

Valid syntaxes for calling extensions within commands are {{extension}} (no parameters) or {{extension(1, 2, a=4, b="foo")}} (parameters). Syntax for parametrized calls respect the Python function call syntax. That is, you can use positional arguments as well as named arguments.

teapot comes with several built-in extensions:

	Extension
	Parameters
	Role

	root
	style
	Get the absolute path to the root of the party file.

Returns the complete path, in an operating system specific manner.

On UNIX and its derivatives, forward slashes are used. On Windows, backwards slashes are used.

If style is set to unix, forward slashes are used, even on Windows. This is useful inside MSys or Cygwin environments.

	prefix
	style
	Get the complete prefix for the current attendee/build.

Returns the complete path, in an operating system specific manner.

On UNIX and its derivatives, forward slashes are used. On Windows, backwards slashes are used.

If style is set to unix, forward slashes are used, even on Windows. This is useful inside MSys or Cygwin environments.

prefix can contain extensions, as long as it doesn’t call itself directly, or indirectly.

	prefix_for
	attendee, build, style
	Get the complete prefix for the specified attendee/build.

You must at least specify the attendee parameter.

Returns the complete path, in an operating system specific manner.

On UNIX and its derivatives, forward slashes are used. On Windows, backwards slashes are used.

If style is set to unix, forward slashes are used, even on Windows. This is useful inside MSys or Cygwin environments.

prefix_for can contain extensions, as long as it doesn’t call itself directly, or indirectly.

	attendee
	
	Returns the current attendee name.

	build
	
	Returns the build name.

	full_build
	
	Returns the full build name, that begins with the attendee‘s name.

	archive_path
	style
	Returns the current archive path.

On UNIX and its derivatives, forward slashes are used. On Windows, backwards slashes are used.

If style is set to unix, forward slashes are used, even on Windows. This is useful inside MSys or Cygwin environments.

	extracted_source_path
	style
	Returns the current source tree path.

On UNIX and its derivatives, forward slashes are used. On Windows, backwards slashes are used.

If style is set to unix, forward slashes are used, even on Windows. This is useful inside MSys or Cygwin environments.

Since source trees are copied to a temporary location before the build, this is not the path were the build actually takes place.

	msvc_version
	
	Get the current Microsoft Visual Studio version, as a dotted version string. Example: “12.0”

	msvc_toolset
	
	Get the current Microsoft Visual Studio toolset. Example: “v120”

You may also define your own extensions, see teapot.extensions.extension.register_extension().

1.1.5. Other settings

teapot runs with the following defaults:

	Parameter
	Default value
	Meaning

cache_root ~/.teapot/cache (UNIX) The path where the archives are downloaded to.

%APPDATA%/teapot/cache (Windows)

sources_root ~/.teapot/sources (UNI The path where the sources are unpacked.

%APPDATA%/teapot/sources (Windows)

builds_root ~/.teapot/builds (UNIX) The path where the builds take place.

%APPDATA%/teapot/builds (Windows)

prefix ~/.teapot/install The default party file prefix that gets prepended to all attendees prefixes.

%APPDATA%/teapot/install (Windows)

These settings are to be set use the set_option() method, like so:

from teapot import *

set_option('prefix', 'install')
print get_option('prefix')

Note

When setting options, note that you can also specify a filter to restrict its effect on some platforms/in some environments.

Depending on your project, you may want to set the cache_path to a more local location (you may choose to add them to version control for instance).

1.2. Using teapot

teapot is the command line tool that ships with teapot.

$ teapot --help
usage: teapot [-h] [-d] [-v] [-p PARTY_FILE]
 {clean,fetch,unpack,build} ...

Manage third-party software.

positional arguments:
 {clean,fetch,unpack,build}
 The available commands.
 clean Clean the party.
 fetch Fetch all the archives.
 unpack Unpack all the fetched archives.
 build Build the archives.

optional arguments:
 -h, --help show this help message and exit
 -d, --debug Enable debug output.
 -v, --verbose Be more explicit about what happens.
 -p PARTY_FILE, --party-file PARTY_FILE
 The party-file to read.

By default, teapot looks for a file named Party in the current directory. You may change the location of this file by using the --party-file option.

1.2.1. The clean command

teapot fetches the sources archives and stores them in the cache directory. It unpacks those archives in the sources directory. It also build attendees and stores the temporary results inside the builds directory.

Use teapot clean to clean either the cache, sources or the builds directory (or all of them).

The use of this command in normally not needed as teapot knows how to compute dependencies and detect changes automatically.

$ teapot clean --help
usage: teapot clean [-h] {cache,sources,builds,all} ...

positional arguments:
 {cache,sources,builds,all} The available commands.
 cache Clean the party cache.
 sources Clean the party sources.
 builds Clean the party builds.
 all Clean the party cache, sources and builds.

optional arguments:
 -h, --help show this help message and exit

1.2.1.1. The clean cache command

Cleans the teapot cache directory, where the source archives are stored.

Use this command if, for whatever reason you think the archive cache was corrupted.

If no attendee is specified, all the attendees are cleaned.

$ teapot clean cache --help
usage: teapot clean cache [-h] [attendee [attendee ...]]

positional arguments:
 attendee The attendees to clean.

optional arguments:
 -h, --help show this help message and exit

1.2.1.2. The clean sources command

Cleans the teapot sources directory, where the unpacked archives are stored.

Use this command if, for whatever reason you think the sources were corrupted.

If no attendee is specified, all the attendees are cleaned.

$ teapot clean sources --help
usage: teapot clean sources [-h] [attendee [attendee ...]]

positional arguments:
 attendee The attendees to clean.

optional arguments:
 -h, --help show this help message and exit

1.2.1.3. The clean builds command

Cleans the teapot builds directory, where the build results are stored.

Use this command if, for whatever reason you think the build results were corrupted.

If no attendee is specified, all the attendees are cleaned.

$ teapot clean builds --help
usage: teapot clean builds [-h] [attendee [attendee ...]]

positional arguments:
 attendee The attendees to clean.

optional arguments:
 -h, --help show this help message and exit

1.2.1.4. The clean all command

Cleans the teapot cache, sources and builds directories.

Use this command if, for whatever reason you want to reset the status of your current teapot project.

If no attendee is specified, all the attendees are cleaned.

$ teapot clean all --help
usage: teapot clean all [-h] [attendee [attendee ...]]

positional arguments:
 attendee The attendees to clean.

optional arguments:
 -h, --help show this help message and exit

1.2.2. The fetch command

Fetches the source archives of the specified attendees.

teapot fetch makes sure all the source archives are downloaded for the specified attendees.

If no attendee is specified, the source archives for all attendees are fetched.

By default, this command only fetches archives that weren’t already downloaded. Use the --force option to force the download of all attendees.

$ teapot fetch --help
usage: teapot fetch [-h] [-f] [attendee [attendee ...]]

positional arguments:
 attendee The attendees to fetch.

optional arguments:
 -h, --help show this help message and exit
 -f, --force Fetch archives even if they already exist in the cache.

1.2.3. The unpack command

Unpacks the fetched source archive to prepare for a build.

If no attendee is specified, all the attendees are unpacked.

$ teapot unpack --help
usage: teapot unpack [-h] [-f] [attendee [attendee ...]]

positional arguments:
 attendee The attendees to unpack.

optional arguments:
 -h, --help show this help message and exit
 -f, --force Unpack archives even if they already exist in the build.

This step is usually not required as it performed automatically whenever needed. Use it when you don’t want to build right away but want the next build to be as fast as possible.

Calling unpack automatically fetches the source archives if they are not present.

1.2.4. The build command

Builds the attendees.

If no attendee is specified, all the attendees are built. If a list of attendees<attendee> is specified, only those attendees and the ones they depend on will be built.

$ teapot build --help
usage: teapot build [-h] [-t tag] [-u] [-f] [-k] [attendee [attendee ...]]

positional arguments:
 attendee The attendees to build.

optional arguments:
 -h, --help show this help message and exit
 -f, --force Build archives even if they were already built.
 -k, --keep-builds Keep the build directories for inspection.

Only the builds that didn’t succeeded the last time or the one that changed since the last build are run. To change that behavior, specify the --force-build option.

Temporary build directories are deleted automatically whenever a build terminates (either with a success or a failure), unless the --keep-builds option is specified. In that case, the build directory remains until the build gets restarted.

2. Glossary

	party file

	The party file is a Python file, named Party, Party.py, .party or .party.py that can be located anywhere.

Within the party file, all paths are relative to the party file directory.

	attendee

	An attendee is a fancy name for a third-party software to build.

A party file can contain as many attendees as you like, and different attendees can even represent the same third-party software if that makes sense in your situation.

	source

	A source designates the location and the method where and how to fetch the source files for an attendee. While the most common case is downloading a file using HTTP, one can also copy a file locally, through a network share or from Github.

	fetcher

	A fetcher is the entity that is responsible for handling a specific type of source.

Usually, fetchers are smart enough to recognize sources from their format and you should not have to care too much about them.

	unpacker

	An unpacker is the entity that is responsible for turning a compressed archive (Zip file or tarball for instance) into a source tree.

	build

	A build is an environment and a list of commands to execute in order to transform the attendee source into a compiled set of binaries (or whatever a build process can produce).

Builders rely a lot on environments.

	environment

	An environment is a set of environment variables, shell value and inheritance parameters that wraps one or several builds.

Environments define the tools to use for a given build, and their options.

	filter

	A filter is an entity whose role is to check if the current execution environment matches a series of criterias.

For instance, the windows filter checks that teapot has been run on Windows. Another example is the mingw filter whose role is to check that MinGW is currently available in the execution environment.

	teapot

	teapot is the name of the command-line tool that implements all teapot logic.

	shell

	A shell is a command line interpreter that will execute the different commands of a builder.

	extension

	An extension is an entity the resides in builder commands and that gets replaced when the command is evaluated.

Extension are python function that can optionally take parameters.

Index

 A
 | B
 | E
 | F
 | P
 | S
 | T
 | U

A

 	
 	attendee

B

 	
 	build

E

 	
 	environment

 	
 environment variable

 	PATH

 	
 	extension

F

 	
 	fetcher

 	
 	filter

P

 	
 	party file

 	
 	PATH

S

 	
 	shell

 	
 	source

T

 	
 	teapot

U

 	
 	unpacker

 nav.xhtml

 Table of Contents

 		teapot - A third-party building tool

 		The party file

 		Structure

 		Attendees

 		Environments

 		Filters

 		Extensions

 		Other settings

 		Using teapot

 		The clean command

 		The fetch command

 		The unpack command

 		The build command

 		Glossary

_static/minus.png

_static/comment-close.png

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

